U nusual condensation of 2-(2-dimethylaminovinyl)-1-benzopyran-4one with dimethyl acetylenedicarboxylate: formation of 2,3bis(methox ycarbonyl)xanthen-9-one

C handra K anta G hosh, ${ }^{*, a}$ S amita B hattacharyya ${ }^{\text {a }}$ and A marendra Patra ${ }^{\text {b }}$
a Organic C hemistry L aboratory, D epartment of Biochemistry, C alcutta U niversity, C alcutta-700 019, India
${ }^{\text {b }}$ D epartment of P ure C hemistry, C alcutta U niversity, C alcutta-700 009, India

Abstract

Reaction of dienamine $2(\mathrm{R}=\mathrm{H}$ and Me) with N -phenylmaleimide or chromone 3 gives xanthones 5 and 8, respectively, through initial [4+2] cycloaddition, whereas reaction with dimethyl acetylenedicarboxylate affords xanthone 13.

The synthesis of xanthones from 3-acyl-2-methyl-1-benzo-pyran-4-one (trivial name: 3-acyl-2-methylchromone) ${ }^{1,2}$ and particularly from some simple condensates of 2-methyl- -3 and 3 -formyl-2-methyl-chromone ${ }^{5}$ involving [$4+2$] cycloadditions has been of recent interest. Diels-A Ider cycloaddition of (E)-2-styrylchromone $1(\mathrm{R}=\mathrm{H})$ with maleic anhydride and N phenylmaleimide is always followed by a 1,3-hydrogen shift giving 1,2,3,4-tetrahydroxanthone derivatives. ${ }^{3}$ The title benzopyranone $2(R=H$ and $M e)$, because of its strong electronreleasing dimethylamino group, is obviously a more reactive diene than chromone 1 and is likely to undergo [$4+2$] cycloaddition even with moderately active dienophiles. Refluxing an equimolar mixture of the diene $\mathbf{2}$ and N -phenylmaleimide in DMF indeed produced the xanthone 5 evidently through the initially formed cycloadduct 4 which readily eliminated dimethylamine and was dehydrogenated under the reaction conditions [Scheme 1, eqn. (1)]. Chromone-3-carboxylic acid 3 however, is a weak dienophile, and only undergoes Diels-A Ider reactions (unaided by any Lewis acid catalyst) with highly reactive Danishefsky dienes. ${ }^{6}$ Dienophile 3 reacted smoothly with the diene $\mathbf{2}$ in DMF under reflux indicating high diene activity of the latter, to give cycloadduct 7 (non-isolable) which, by decarboxylative pyran ring opening ${ }^{1}$ and dedimethylamination, was transformed into 2 -salicyloylxanthone 8 [eqn. (2)], 8 ($\mathrm{R}=\mathrm{H}$) was identical with an authentic sample. ${ }^{1}$

Surprisingly, dimethyl acetylenedicarboxylate 9 did not behave like the two aforementioned dienophiles towards the diene $\mathbf{2}$, and hence did not afford the cycloadduct 10 or its dedimethylaminated product 6 (Scheme 2, path a): instead, it gave exclusively the xanthone $\mathbf{1 3}$ isomeric with $\mathbf{6}$. Theformation of $\mathbf{1 3}$ may be rationalised as follows: compound $\mathbf{2}$ behaves like an unconjugated enamine in undergoing [2 + 2] cycloaddition with $\mathbf{9}$, to give adduct $\mathbf{1 1}$ which isomerises to $\mathbf{1 2}$ (Scheme 2, path b). ${ }^{7}$ The ring opening of the cyclobutene 11 having both an acceptor and a donor substituent in an appropriate disposition, most probably occurs in a symmetry-allowed fashion, ${ }^{8}$ though involvement of an ionic mechanism with participation of the nitrogen lone pair of the dimethylamino group in the rearrangement ($\mathbf{1 1} \boldsymbol{\rightarrow} \mathbf{1 2}$) may not be completely ruled out. ${ }^{8,9}$ The ring-opened intermediate 12 incorporating a pre-existing double bond at the pyran 2,3 -position, behaves as a hexatriene system which by electrocyclisation ${ }^{10}$ and subsequent elimination of dimethylamine affords the xanthone 13.

The results presented here apparently reveal that the diene $\mathbf{2}$ undergoes Diels-Alder reaction with a relatively weak dienophile and $[2+2]$ cycloaddition with a strongly reactive

one. It is known that double [2 +2$]$ cycloaddition predominates over $[4+2]$ cycloaddition in the reaction of several 1 dialkylaminobutadienes with sulfene, ${ }^{11}$ and this fact, together with the piece of work described in this communication, is a stimulus for further study of [4+2]- vis-a-vis [2+2]-cycloaddition of the diene 2 with different π bond systems of varying dienophilicity. M oreover, the formation of xanthones or dihydroxanthones through 2-(cyclobut-2-enyl)chromone intermediates like 11 deserves further study.

Experimental

G eneral procedure for treatment of 2-(2-dimethylaminovinyl)chromone 2 with N -phenylmaleimide, chromone-3-carboxylic acid and dimethyl acetylenedicarbox ylate
A mixture of $2(0.5 \mathrm{mmol})$ and either of the aforementioned dienophiles (0.5 mmol) in dimethylformamide (10 ml) was heated under reflux for 8 h . The reaction mixture was cooled and diluted with water. The precipitated solid was filtered off,

dried and crystallised from chloroform (charcoal)-light petroleum (bp $40-60^{\circ} \mathrm{C}$) to afford the product in $35-40 \%$ yield. The following compounds were prepared by this method.

N-Phenyl-9-oxo-9H-xanthene-1,2-dicarboximide 5 ($\mathrm{R}=\mathrm{H}$). Yellow solid, mp $252^{\circ} \mathrm{C}$ (decomp.) (Found: C, $74.2 ; \mathrm{H}, 2.8 ; \mathrm{N}$, 3.8. $\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.9 ; \mathrm{H}, 3.2 ; \mathrm{N}, 4.1 \%$); $v_{\max }(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1740$ (amide CO), 1625 (xanthone CO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$ M Hz) 8.39 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8, \dagger 1.4,8-\mathrm{H}$), $8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,3-\mathrm{H}$), 7.91 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,4-\mathrm{H}$), 7.78 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5,8.3,1.4,6-\mathrm{H}$) and $7.61-$ 7.30 ($7 \mathrm{H}, \mathrm{m}$, other ArH).

N -P henyl-7-methyl-9-oxo-9H-xanthene-1,2-dicarboximide 5 ($\mathbf{R}=\mathbf{M e}$). Yellow solid, mp $254^{\circ} \mathrm{C}$ (Found: C, $74.2 ; \mathrm{H}, 3.5 ; \mathrm{N}$, 4.2. $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}, 3.7 ; \mathrm{N}, 3.9 \%$); $\delta_{\mathrm{H}} 8.24(1 \mathrm{H}$, d, J $8.4,3-\mathrm{H}), 8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.1,8-\mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,4-\mathrm{H})$, 7.61-7.39 ($7 \mathrm{H}, \mathrm{m}$, other ArH) and $2.49(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e})$.

7-M ethyl-2-salicyloylxanthen-9-one 8 ($\mathrm{R}=\mathbf{M e}$ e). White crystals, mp $184^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 76.2 ; \mathrm{H}, 4.2 . \mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C , 76.4; $\mathrm{H}, 4.3 \%$); $\delta_{\mathrm{H}} 11.88(1 \mathrm{H}, \mathrm{s}$, exchangeable, OH), $8.68(1 \mathrm{H}$, d, J 2, 1-H), $8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,8-\mathrm{H}), 8.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7,2.0,3-$ H), $7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7,4-\mathrm{H}), 7.63-6.93(6 \mathrm{H}, \mathrm{m}$, other ArH) and 2.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$).

2,3-B is(methoxycarbonyl)xanthen-9-one 13 ($\mathrm{R}=\mathrm{H}$). White crystals, mp $138^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 65.2 ; \mathrm{H}, 3.7 . \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{6}$ requires
\dagger J Values are given in Hz

C, 65.4; H, 3.9\%); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1745$ (ester CO), 1735 (ester CO), 1670 (keto CO) and 1620 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}} 8.82(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 8.33$ (1 H, dd, J 8, 1.3, 8-H), 7.78 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.4,6.9,1.3,6-\mathrm{H}$), 7.71 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), 7.53-7.40 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 7-\mathrm{H}$), $3.98(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$) and $3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$).
2,3-B is(methoxycarbonyl)-7-methylxanthen-9-one $13 \quad(\mathrm{R}=$ Me). White crystals, $\mathrm{mp} 166^{\circ} \mathrm{C}$ (Found: C, 66.0; H, 4.2. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 4.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ (ester CO), 1730 (ester CO), 1675 (keto CO) and 1625 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}} 8.83$ ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), $8.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.8,8-\mathrm{H}$), $7.70(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.58$ (1 H, dd, J $8.4,1.8,6-H), 7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,5-\mathrm{H}), 3.98(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$) and 2.48 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{M} \mathrm{e}$); $\delta_{\mathrm{c}} 175.6$, 167.2, 165.8, 157.0, 154.1, 138.6, 134.7, 125.4, 122.0, 121.1 (s), 136.6, 129.2, 125.9, 118.6, 117.7 (d), 53.0, 52.6 and 20.7 (q); m/z 326 (${ }^{+}$, 47\%), 295 (M - OM e, 100), 236 (295-OM e-CO, 7) and 208 (236-CO, 11).

A cknowledgements

Financial assistance from UGC and CSIR [Scheme No. $01(1362) / 95-E M R-11)]$ is duly acknowledged.

R eferences

1 C. K. G hosh, A. Bhattacharyya and C. Bandyopadhyay, J. Chem. Soc., C hem. Commun., 1984, 1319.
2 C. K. G hosh, S. Sahana and A. Patra, Tetrahedron, 1993, 49, 4127.
3 R. M. Letcher and T. Y. Y ue, J. Chem. Res. (S), 1992, 248; J. Chem. Res. (M), 1992, 2078.
4 R . M. Letcher and T. Y. Yue, J. C hem. Soc., C hem. Commun., 1992, 1310.

5 C. K. G hosh, K. Bhattacharyya and C. G hosh, Tetrahedron, 1994, 50, 4095.
6 P. J. Cremins, S. T. Saengchantara and T. W. Wallace, Tetrahedron, 1987, 43, 3075.
7 K. C. Brannock, R. D. Burpitt, V. W. G oodlet and J. H. Thweatt, J. Org. Chem., 1963, 28, 1464; ibid. 1964, 29, 818 and references therein.
8 D. N. Reinhoudt, W. Verboom, G. W. Visser, W. P. Trompenaars, S. H arkema and G. J. van H ummel, J. Am. Chem. Soc., 1984, 106, 1341.

9 E. Winterfeldt, A ngew. Chem., Int. Ed. Engl., 1967, 6, 423 and references therein.
10 J. M arch, 'A dvanced Organic Chemistry, Wiley Interscience, N ew York, 3rd edn., 1985, p. 1002.
11 G. Opitz and F. Schweinsherg, A ngew. Chem., Int. Ed. Engl., 1965, 4, 786 and references cited therein.

Paper 7/03495D
Received 21st M ay 1997
A ccepted 29th M ay 1997

